报告题目:Wave Equations with van der Pol Type Boundary Condition
报 告 人:冯兆生,University of Texas-RGV,CNSNS主编
报告时间:2019年12月27日(星期五)14:00
报告地点:南校区理科楼413教室
报告摘要:
In this talk, we consider the one-dimensional wave equation on the unit interval [0, 1]. At the left end x = 0, an energy injecting boundary condition is posed, and at the right end, x = 1, the boundary condition is a cubic nonlinearity, which is a van der Pol type condition. This nonlinear boundary condition behaves like a van der Pol oscillator, causing the total energy to rise and fall within certain bounds regularly or irregularly. We apply the Devaney’s theory and Lie symmetry reduction method to present some theoretical and numerical results on chaotic vibrations.
报告人简介:
冯兆生,美国德克萨斯大学RGV分校理学院教授,德克萨斯大学杰出成就奖获得者。主要研究方向有非线性分析、分支和混沌理论、 数学物理问题、数值模拟和生物数学等。目前担任国际知名一区学术期刊 《Communications in Nonlinear Science and Numerical Simulation 》的主编和 《Electronic Journal of Differential Equations 》的执行主编,同时担任多个国际SCI学术期刊的编委和AIMS微分方程和动力系统的系列丛书的编委。
欢迎全校师生积极参加!